Schur congruences, Carlitz sequences of polynomials and automaticity
نویسندگان
چکیده
We rst generalize the Schur congruence for Legendre polynomials to sequences of polyno-mials that we call \d-Carlitz". This notion is more general than a similar notion introduced by Carlitz. Then, we study automaticity properties of double sequences generated by these sequences of polynomials, thus generalizing previous results on double sequences produced by one-dimensional linear cellular automata.
منابع مشابه
Congruences and Recurrences for Bernoulli Numbers of Higher Order
In particular, B^\0) = B^\ the Bernoulli number of order k, and BJp = Bn, the ordinary Bernoulli number. Note also that B^ = 0 for n > 0. The polynomials B^\z) and the numbers B^ were first defined and studied by Niels Norlund in the 1920s; later they were the subject of many papers by L. Carlitz and others. For the past twenty-five years not much has been done with them, although recently the ...
متن کاملA Note on Lerch’s Formulae for Euler Quotients
Lerch’s formulae for Euler quotients in the rings Z and Fq[t] have already been studied. In this paper, we extend the study of these quotients to number fields and the Carlitz module. In the number fields case, we prove a version of Lerch’s formula for OKHil , the ring of integers of the Hilbert class field of a number field K. In the Fq[t] case, we replace the usual multiplication in Fq[t] wit...
متن کاملOn a Multidimensional Volkenborn Integral and Higher Order Bernoulli Numbers
In particular, the values at x = 0 are called Bernoulli numbers of order k, that is, Bn (0) = Bn k) (see [1, 2, 4, 5, 9, 10, 14]). When k = 1, the polynomials or numbers are called ordinary. The polynomials Bn (x) and numbers Bn were first defined and studied by Norlund [9]. Also Carlitz [2] and others investigated their properties. Recently they have been studied by Adelberg [1], Howard [5], a...
متن کاملThe Carlitz-lenstra-wan Conjecture on Expectional Polynomials: an Elementary Version
We give a proof, following an argument of H.W. Lenstra, of the conjecture of L. Carlitz (1966) as generalized by D. Wan (1993). This says, there are no exceptional polynomials of degree n over Fq if (n, q− 1) > 1. Fried, Guralnick and Saxl proved a much stronger result, showing that primitive exceptional polynomials have monodromy groups with degrees either a power of the characteristic (and th...
متن کاملSome Remarks on a Paper by L. Carlitz
We study a family of orthogonal polynomials which generalizes a sequence of polynomials considered by L. Carlitz. We show that they are a special case of the Sheffer polynomials and point out some interesting connections with certain Sobolev orthogonal polynomials.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 214 شماره
صفحات -
تاریخ انتشار 2000